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p.oder to asneds the onnet of potal dfovmiag defeets aneh ag the initisticn of

dernal or surface caoochs or the penevat ton ol residual stresses, and thi

erands clastle-plastic analysio. This report craprises commenits on the ploo-

vicity theory formulation needed for a fYiuite-element computer code desipned

“or the analysis ol metal forming processes. J. R, Rice has pointed out e

pottance of convection and rotaticn terms in the definition of stress—-rate

orincdusion in @lautic-plastic constitutive relntions, and that the dev! e

*pt of uniquencss and stability analysis by R. Hill provides a convenicat

“chicle for including these effects.  The developuent of these concepts is das-

ribed and how they gencrate a convenient variotional principiec to form th
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1. _Introduction
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—

The Panic for apmlﬂﬂstinqugric Code

.

For satisfactory auilytical asscssment of metal forming probleuns,
it is necessary Lo cvaloaate the varying stress distribution througdou

the work-picce cince for

ing defects, such ag the developrent of intor-
nal cracks, depend on steoess history, and residual stresses can be o r-
tant in deciding the utilization of a formed part. Llastic characterice-
tics usually play an cssential role in the determination of stress, even
in combination with extensive plastiec flow which may involve strains o !
thousand tiwes elastic streain magnitudes.  Thus analysis of metsl
forming probicins for such assessments must be based on elastic-plastic
theory. The same is true for other stress analysis problems vhen plaz-
tic flow occurs, unless plastic flow is occurring simultancously 1
throughout the entire body throughout the duration of the process, in
which case plastic-rigid analysis is adeguate.

Because plasticity lays are incremental in nature, tlhicy result in
relations betworn stress-rate and strain-rate, or equivalently in nuineri- 1
cal evaluatiouns, betwoen stress ond strain increments.  Forv Lho raic-
independent 1aws usunily adequate at temperatures low conparcd with the
melting temperature, lincar relations bet reen stress-rate and strain-

rate arise. Khen plastic {low is taking place, the coefficientsy arve

functions of the current stress for the common laws and below the yield
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stress the clastic laws apply in incremental form. Because of the struc-

ture of these laws, clastle-plastic problems are commonly solved in teres
of equations for stress-rates and strain-rates, containing stresscs as
coefficients. Consider the solution to have been computed up to the

time t . Afver a tiwe step forward, At , the solution for rates glves
the stress at time t -+ At in the form g(t) + éAL ,» and similarly for

other varisbles. ? is the appropriate stress-rate. Then a new Ulime
step can to tolen end the process repeated.

Extercive scudies ol the applicatlon of such laws to stability and
uniqueness of solutions have been made by Hill (see, for example [1], [Z2],

-

[3] where Le shows that care in the sclection of stress definitiens
and stress-ratc and strain-rate expressions is important for a satis-
factory development of the theory. Rice [4] has pointed out that such
questions are also important in developing a satisfactory theoretical
basis for clastic-plastic stress analysis, particularly in fhc comann
circumstance that the tangent modulus in plastic flow is of the order
of the stress. Convectod and rotatlon terms then beconie important in
the stress-rate express ‘on, and analogously stress variables shoull be

sclected so that the influence of rate of deformation of the boundaries

-

of the baly does not cosplicate the variational principle commonly used

to replace the cquilibyiua equationy for evaluation of solutions. ‘This

. : 1
4 requirement can be achiceved by using the unsymmetric nominal stress 3
. 1
'*‘.’ e I VI !

7 Nunbers in oquave brachots refer to the bibliography.
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(Piola~Kirchoff I) in which the stress is defined as force per unit
undeformed area. The variational principle then involves an integral

over the undeformed body which is fixed.

Plastic flow is c¢ssentially a2 fluid type phenomenon which can be

most conveniently cxpressed in torms of the current configuration of the

material. Thus a reference confipuration which remains invariant through-
out the motion is not sppropriatc and so the configuration at time ¢t

is adopted as the reference zowio for cvaluation of the deformaticn from

t to t -+ At , where 4t s - ufficiently small for adequacy of fir:z

order thcory.

The framework described above provides a satisfactory foundation
for a finite~element elastic-plastic code as discussed by McMeeking and
Rice [5]. In effect, by choosing the current configuration as the refer-

ence state the Cauchy stress (or true stress in Cartesian coordinates)

the unsymmetric nominal stress (Lagrange or Piola-Kivchhoff I) and the
symmetric nominal stress (Kirchhoff or Picla-Kirchoff{ TI) all have iden-
tical values at the current time whiclh simplifies utilization of the
appropriate stress for the appropriate component of the calculation.

Although the stress components themselves are identical, rates of change

of the different stresses are not the same.

2 Development of the Theory

Following Hill [2] and using for the nmost part his notation, we con-
sider the unsymmetric nomiunl stress (variously referred to as Lagrange
: or Piola-Kirchoff I) s defined so that the jth component of the

, i]

i
force transuitted across a deformed clement, which in the initial or l

salbenect S it
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reference state had area d8 and unit normal vi , 1s

2z P
ds v, 515 d f (1)

Hill considers (p. 214 of {2]) rate or flow type constitutive lawus of

the form
A ) R
81y 5 (v, /3K) (2 |

where X  are roctangular Cartesian coordinates in the initial or refer—
ence confipuration, E is a homogencous function of degree two in the

velocity gradients, avj/axi y» and wvhere ;ij is the partial tire deri-

s o e o ——— ot

vative at fixed X, i.e. a material derivative at a particle. The

i velocity vj(X,t) gives the distribution at time t expressed in the

initial coordinates of the corresponding material points (note that a

: tilde under a symhol denotes a vector or tensor in absolute nmotation).

(-]
Boundary value problems are counsidered in which for a volume V

in the reference state, at time t stress rates X,t) and veloci-

s
ii (~
ties v,(X,t) are sought for presecribed nominal traction rates Fj
(-
over the part of the sreface SF , velocity Vj over the remainder of
° .
the surface Sv and body force rates gj per unit initial volume,

Then the variational principle

(-] . (-] . o
S{ S EAV~ S F, v dS ~ f g v dV] =0 3
' [o . e J ] ogJJ] (3
; v SF \)
: in the class of continuvous differentiable velocity fields satisfying

[
the velocity boundary condition on Sv s characterizes the solution,

for it yiclds the equilibrium equations

! 129,
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and the bounrdary traction rate condition

visij m Fj (5)

for nominal st.ess, si' » and the reference sgeometry.
J
In writine the elastic-plastic conotitutive relation, we wish to

associate the velecity grodient dn (2) with tha rate of deforaurior or

velocity strain:

ij avi _ :
D.. =% G 5 (6)
1] (:;.j 3X_i

vhere X, are Cartesian coordinates expressing the position of parti-

cles iu the deformed body
= x_ (X,t 7
*i 1(- ) 7)

Thus to permit simultaneous use of (3) and the plasticity laws expressed
in the usua! form of rate of deforoation of the current configuration,

Hill takes the current configurztion to be the reference state, and

hence

X, = x (4, 6
i ; ¢ ) (8)
for 2 particular t . 7The theory is expressed in this form for cvalua-

tion of s and vj and hence the solution and configuration at

1]

t + At , which provides a new reference state for evaluation of the

next time step At .




M—_—.—— . U S T

7 “*!'

Note tha or the instan:  t , when the current and refozeuce con-

figurations arc id.ntical, the nominu) stress cowmponents Sii are equal
to the Cauchy or wiar sLress couwponent.s oi, » so Lhat at this instant
J ,
s, TTts-sypaelric,
i3 ‘¥L“-~\“_‘\
The device of selceting the contiguration et time t  to be the . -
reference iate (o evaluatrion of the gelution at time t 4 AL thus
permitys sinuliacc. s use of the convenient variational principle (3) in
terms of nodinal tress s, and a lixcel geometry and the familiar :
i} . .
plasticity luws o-presced in terms ol the Cauchy,. or true stress, 0ij . ! ;
: 1

. P : o)
By working virh curvilinecar convected coordinates, § » having an

arbitrary confliurcation in the refercuce or initlal state, HIL) {[2],
A

Pe 219 (f.} shoss that the rate potesidal (2) folloews from assoclated
rate potentials for othier slresses aud stress rate expressions, some of
vhich are more convenient for represceating elastic-plastic laws.

Consider curvitinear coordin ten in the initial or refercuce

v

state vith bace vectore £, Alrer deformation an gshown 4o Tig. 1

a
these become  § , havin;: the sane values for the same material par-

rd
a . « -,
ticles as & . Then arc the convected coordinates and the cor-
o
responiing bose vectors ae g widien avre  p deformed by the
~a ~u

motion. Then the Cauchy stress tensor o has contravariant components
018’ -
a in convectied coordinates suech that the force dF  transmitted

across an element of the doformed body ol area dS  and unit normal

»

vector va {5 given by:

aF = 0 P (v Lds) (9)
—~ a .."’




Since the priw.d courdin:tes are made evident by the notation v and

for normal and base vectors in the deformed state, the prines wili usu-
-

] o .
ally be dropped hievenfter, for £ = § denote the same material podnt,

For the Lagionge or ["iola-Kirchhof{ 1 stress, Sij s the forca
?ﬂ computed in the roference frame is that actually acting across the
,g deformed elcment (see Fung [§) p. 437 for the usual definition in
E Cartesian coordinates). For the present cousideration 6f convected ;
. i
coordinates, the expressica fer dF O thoas takes the farnm !
; QBO o o )
f dF = s (v dS)g : ()
- o b i
:' For the Kirchhoff or Piola-Kirchhioff II stress, Tij s ang points out
that the force vector cowputed in the reference frame must be transforuc:d 1
by the motion to give the actual force across the deformed eleuwcnt, so
N that for convected eoordinates

bl

i
': © (-] © (]
! dF = Tuﬁ(v dS)g
~ a -
becomes
08 o o
F = ds JRSRY
d- T Ve, )§B il
Nanson's relation for area element:
0o o
' i ds = y
; pv dS = pv ds (12)
i then gives, using (9) and (11)
[
1“3 =L cuB = J ouB (13
p
i
'
i 112,
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wvhere J 1is the Jacobi.on oi the transformatica from the refereuce Lo

the deforned state, i.c.

@ ° v
. * w2 o LAY X o / ¥
B« " 85 ’ ?Y J(Tu o &v) (%)

. . . , \ o . .
Fig. 2 shows the particular situation when the § cooxdinates in

. a .
the reference frame are Cartesian, X7 . The Cartesian coordinutes

representing points dn the deforrod body accordiag to the point trang-
formation, equ. (7), are xi . The usual definition of the Firchibor !
or Piola-Kivchhoff LI stress (s-¢ Fung [6] p. 439) is glven in teris of
this point transformation. Frowm cqu. (7), define the deforaation
gradient
i
F =.§§a (15)
- oX

T is given in terms of the Caucly

Then the Piola-Wirchhoif II stress

. R . C
stress in Cartesian coordinates % , 6 by

-

1 = JFC§F  ([7] p. 125) (16)

. . .. 5 a
where J = det (F) . Tais is in accord with (13) where o B are the

contravariant componants of the Czuchy stress with respect to the con-

,

. Qa . cij
vected coordinates X for if ¢ J

arce the Cartesian coordinates of

0 with respect to x , then the teasor change of variables law gives

-~ -~

0 S D Y ol
¢ T onl axd

8” Ucij

a7

x + X° in the deformed

-~ -~

in terms of the coordinate transformation from

a a

geometry. DBecause of the property of convected coordinates that X = X

131,
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for the same prot’nle, (7) also expresses the courdinare trensformaticn,
and (13) and {17) are scen to bhe equivaluent to (16). This connection
has been pointed out by Nemat- Masser [8). Note that suﬁ a1 aie
tensor densitics 2nd not absolute tensors, so that equations such as (7)
are not pure touaor relations,

For :ate inacpendent coastitutive relations the rate-potontial fu.:
tion E in (2) i: a homogencous function of degrec two. Far the choice
that the referenc: state is the current state, (2) follows from thq exnis—

tence of an associated rate potential function Y(¢€ ) , of the stratn-

ef
3
rate components
P | . S
L = 75 (v + v oD
of 2 ( a,B B,u) . (a2

where v is the velocity vector in the deforming body and the cow:a
af

. -
denotes covariant differentiation. Thie function generates 1t throush

L )
dEaB

where the superposed dot indicates time derivative of the convected cou
ponents or convected derivative. This is equivalent to the partial tiue

derivative at fixed X , or a material type derivative. The structure

of (19) indicates that since 1 is a tensor density, F 1s a scalar

-

density and not an absolute scalar invariant.
A derivation of a relation neceded in the following analyses to estab-

lish (2) is given in the Apperdix, 1t is the relationship between

4]

(O34 af

S and 1 , which, for the particular choice of referoaece state

mentioned, takes the form

134.




Now from (19) and (24)

cap . wy b
S = 31‘/()((. ) o'y

b » 7

maltiplying botu sides by o) . glves
S IO
. - . ay .
s 8 v S LT G B R Ty v (71
B,a afs of ,Y B,o

afl . : .
using (18) aund the fact that T is symmetric. Now F(tuB) is a
homogencous function of degree two since for plasticity (19) 4s . race
independent, kence Luler's theorceam for homogeneous functions permits s

teo wiite (21) iv the form

caf .. . ey B -
Vg o 7 21(La8) + o1t v ,Y‘VB,G (z2)

Again using Euler's theorem, this is consistent with (2) in terms of

convected coordinates if

0B 3/ (vg ) (7a)

and
) = q -1 oy B T
Zh(vﬁ,a) 2F(auﬁ) + T v ,sz,a (#3)

Equation (21) is a contracted scalar rclation based on the tensor
expression (20) and hence does not validaie the tensor relation (2a)
or (2). 1t mercly prescribes the form of the rate-potential function
E if such a function erists. Substitution of (23) into (2a)

does yicld (20) and hence establishes E as a homoegencous, second

- — e -

il e - o hatie e ML ol L ki il i Rl P L




degree, ratie-pot-acinsd Yuociion of for the romiuval stress rate
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A similar rpoeent for whie Cavchy stress o yields o vrizl por o=~

tiz)l function, «iich hovevenr Jeils to yield the corrcet exprescion for

* . . - .
g B from the raic-porenvi-l cquation. Mence a rate potentizal funculs s
docs not exiut du thia cauo,

The lawe of placsticity are normally obtainad by measuring "t
stress'” and Incivements of strain defived in terns of Cartesfan courdi-
nates in the current confijuretion without rotations occurring. Since
the theory must apply in the prescnce of rotatiens, their influcnce
must net affect the stress rate ter: Jjn the constitutive redotica, Lo oo
a spin-invoeriant stress rate is needed, such as the Jaunaun rate. Ve
will vork in teros of the cenfiguration at time t , which is the 1ef¢:~
ence configuration, and utilize Cartesian coordinates x .

In formulating the finite element theory for numerical analysic of

elastic-plastic probler~, we wish to use the vaviational relation (3)

in terms of S'j and a constitutive relation associated with (19) in
i
terms of Tij since it can be conveniently asseciated with measurewments

of plasticity laws. We have scen that a law in the form (19) irmplies

the validity of (2) and hence the variotional principle. As poir*nd

out in [5] this structure in terns of Ti, leads to symwetric stiff-
ij

ness matrices in the finite element formulation which simplifies the

nuiter Lcal proccedures.
Now the reiationchip between the nondoal stress a

, c
Cartesian true stress ¢ is

1 Q




. C .
o Fs=Jg (2%
" see, for exemple |71, p.o 125% where the nominal stress Is defincd as the

Or

transpose of & (ox dr o on Lo deduced from (9), (10) and (17)). Toldny

the material derivetive or (Z4), and noting that F and J are uairy
s Y

for coincidoiit. reofersnee od ecurvent ceufigurations, ope ohtaios

&1

. eV ¢ oy ;
S,, P8 o= 0, b6 {25
13 kj ox Aioes, 1]

ek ' . . C Ty .
The difference between the Javmann derivative of ¢ and its matecisl

derivative is tho contribution of the rate of rotation of the axes which
rotote with the body according to the antl-syrmotric temsor angular
velocity exprossion
avi
1 o
ox, (~(’)

where A denctes the anti-symmetric part. Using 9/t to denote the

Jaumann derivative, this determines (see Prager [9) p. 155)

C

Da, . . dv, ov.

005 S | A <7
Nt ij ik dxk kj 'dxl__ : .

Couliuation of (25) , (27} and (&) ¢ives

C
. moij ¢ avy ij
5 e (a—mh e § ) + ) -
Sy 7GR T Ol % Ped YT #

af

Equatfon (13) defines 1 s, the Kirchho.. stress, in terms of con-
vected coordinates. Belng a tensor density, definitjon for other
. coordinates 4 obtained by use of (L7) anitably madificd to incorporntna

the density term J o Ve have scen that experiments from which the laws

B

alilet i a8 NSl ] v b o Y ladeg A da.
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of plasticity were dedinenl involved "true srress” ascocfated with
Cartesian covordinate which, for plastie analyses, indicates the cppro-~
priatencss of a Jauw .ann time-drerivative asseciated with rxotation of

- , o ¢ 4 .
rectangular axes. 7Thus we necd to utilize Tij = J Ujj to inccrporate
the Jaumann derivative, and the {irst tern: in parenthesis in (Z&) can be

, p
. c . . . .

written @Tiilmt » tince the devivative of the scalar density J  is
unaffected by rotation of axes, zad at tine t  the instantancous value
of J =1 . HIll hae staved 7177 p. 222) that the rato poteatsai (19

implies 2 rate potential fLor (b Jaumann devivacive of s Which pro-

T
13
vides computational advantages sssociated with the use of the Jauiszna

derivative of this stress variable.

Thus (28) takes the form:

C P

. SDT];:-) ()Vi

= 3 + ¢ - — )
®i157 ot Codlie ¥ %y Pad vk o, (29)

How combining (20) and (29)

so%l. .

S + 4+ g D
Pt Ty %5 P P 9Pk (30)

In view of (19) written for initial Cartesian coordinutes, with
F(Di') horogencous of second order in the strain rates, multiplication
J

of (30) by Djj and using Euler's theorem gives

[«
DT, .,
.....‘l.l =1 2 O 4- =z
ot Dyy ™ A 0yl Y ogPaliy T 2F Y 290,505 (31)

. caf . . .
which analogously to (21) for s & provides a trial rate-potential
function

G=F+ o,
i

Dy Py (32)

k




assuning Euler's theorem.  In a mauner similor to that presented for

e t) ) .
s , a thivd rate~potential function is thus established:
c
fi)l'i_] 80
ST (33)

13
The clacrical elastic-plastic isotropically work hardening law
(Proandtl-Reuss), comnonly giving strain-rate as a linear function of
stress—rate, c¢am be inverted to give stress-rate and takes the form

([5) p. €006)

Cc C ¢ o
9a, . . 357, 67, (==
9“? R S S DU NP,y S S *"Eﬁ,ﬁlﬂﬂ_,_£+v )] B (34)
Dt Liv akTin IR iy T 52 g T E k1
3 1+v

vhere E and v are Young's modulus and Poisson's ratio, ¢° denotes
stress deviavor, o is the current tensile yield stress and h the
current grodient of the true-stress logarithmic plastic strain curve in
a tension test. The Jwuninn derivative is used for stress-rate as mon-
tioned above in order te¢ eliminate rotation cffects, and the last tern
in the brackets is dropped when the increment of deformation is elastic.
We have sliown that there is a rate-potential function G for gij s
but not onec for gij . This means [5] thaﬁ a non-symmetric finite-
element stiffness matrix would be deduced using (34). Replacing

c c .

oij by Tjj in the stress-rate term would yield a symmetric stiffness
natrix which would simpliiy the nuncrical analysis. Moreover such &

change 1s appropriate in terms of its representation of the physical

laws. 7The J term in

(35)

139.
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arisns in noere aceura 3, cesentation ol the Jaws of clasticity than
Hooke's law used fn e loonlonl elasticity. 1t 1o cssociated with oo
melrical nou-linecarit, uwuhich expresses the non-lincar influence of
finive stealn. In oifcat it o -oresues the fact that energy density voee
unit. initial voluae yickds o siopler energy conscrvation statenent, los
per unit curionu voluma irolizs change of encrgy density sivply becanse
the amount of naterisail cenuainiayg it changes. For example, the teruw
(p/po) appearing dn conction {749y of [10) is vquivélent to replact: g
o by Jo , and do wias poanio2 wat ia that paper (pe 935) that suih o
teim provides a good approxini.tion to non-lincar elasticity of met:lu
wlith input of only the two classical clastic constants. A similar
wodification of the clussical laws of plasticity was suggested in [11]
vhere it was found counpelling to evpress the yield stress in teroc &f
Jo  (equs. (32) and (34) of {111). Zipain this vas based on tle requive-
wents of geometrical non~linearity, which of course are independent of
specific material charvacteristics.,

Introduction of (2) into the variational principle (3) expresses

jt in the form

B.v.dV) = 0 (36)

which, ol:0o tha relercacs atate is. the curreat state (30 = %) can b
written
. Dvi . .
« e Ak - & r > ] 1 P
£ %55 é(axi)dv ((g Pjvde + égj\jdl) 0 (37)

P

Substituvtion of (29) and applying algebraic manipulation based on

. ———
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cymretrics then ylelus the vaclationad privciple in the fornm (8o ¢ v,

; (5) of [5])

! 'Dﬁi- .
— 5t o{p, ) -~ ho 8(2D, T - 1
. ‘I, Lo by ) - ey e g T Vit Vi,
—6(f ¥.v .45 + Sfg.v.dV) = 0 (38)
b S i3 v JJ
. F
vhere the sub:cript ,1i denotes the operation a/axi + Now utllizing
: (33), the principle takes the form (sce equ. (15) of [5]).
S rauy ¢v = Nso, (2D b v Jav
Y AR TUN R AN
- f F,v.dS - fg,v,dV] = O (39
} J 1 JJ (3%
S v
F
By (33), aad wiing Euler's theorem
c
DT, . .o 2
1Te P .
AL R 20 __ 5 - £ ... D (40)
Pt ol 3h, . b k1 ijkl ¥l
ij ij ki
since BC/BDij is homogeneous of first depree in D, hence Pj‘ is

skl

symmetric in 1ij 4> kl as well as i<« j and k «+* 1 . Since G

is homogeucous of seccond degree

Mg
G(?) =75 Dij (41)

The symmetry implicit in the variational principles (38) and (39) with
(40) aud (41) ivply symmetric stiffness matrieces which carry thyough
to the finlte-element formulation [5].

3.. Discussicn

As discussed by Rice [4] and McMeeking and Rice [5), the develop-

) ment revicwed in these notes brings out the importance of convection
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cffecte and appropriate sty .s~zate definfcions In fornulaciiy, ¢lo it~
plastic checey. Thun the breocise aualyets of continuuam thesry wase Lo
applied to oiral  rellible peaulta, Cowron awall strala asoaopiions
are pot voliid ¢ooa for Laory ental vhinry brsed on small serain Ineie-
renta.  This ohoanlen dg 'opileit Lo comporison of the firsry an
secoid teoms T the flrst voluwe Jntepral in the vaviatfonal principle
(38).  fa plant ¢ flow tle coefficlent of 8D in the first tem is
“hD , wviore 43 the gradicnt of the tensile stress=-plastic strain
curve, - e o b gecomd toya is * «D3N . The second terny (nd thae
differc-ce bhetveen the Jaunonn derlvative 2and other stmpler tfwa der -
vatives can ov'y be neglected if h >0 . The relative error in
neglecting soech teras is effeetively independent of the maguiltude of
the strain jncrevent adopued, su that swall steps do not pevslt uile, 34 ,
fleation In this regard.  For pany metals h -~ o !
It is interesting to note that the complications which arise in

elustic~plastic analysis result from the elastic component of strain,

and not the plastic. For stress and strain deviutors, elastlic-idenlly

. I . 2
plastic deforvation with a ises yicld conditicn, JZ = ai_ of /2 =17,
j 1
satisfies
D, = 07 /26 + Ao” N
13 1j 1] f

.
gives

where M is o parameter, Multiplication of (42) by o

1j

A= ";'_3“23/232 (43)

For isotropic work hardening with a Mises yield condition, (42) takes

the form

TN e e ———

L I 1 it T
T ——

™ S - . TR TUES,




(44)

The first teirs ¢ oo rient hand sides of (42) and (44) nre the ol ztic
straln rote conponents . dhas rigid-ideally plastic theory ((42) w.ih

. A
the ¢ term aoleted) sives o relation betveen stress cnd velocit seo
dient with ro covplicotlons due to a stress rate ternmn, vhich grootly
sluplifies the enaly T, apart fron the difficulty of deterninil:.., C.e

rigdd repiang.  S: b Wy for vork Lavderndine rigid-pd ctic aanly

({A44) with the o terw dorctod), only the raie of chrane of o sire @

invariant cccurs, which is siwpler o include than a teasoer race. o
elastic-plastic theory it jis the e¢lastic term vhich ivtroduces curon—
rate and the consequent complications.

Many techaolegically dnportant metal-{oraing problius are st . dy

state proccooscs in which aoi_/GL| = 0 . In planninz Lo use g iaa=-
h} x

lysls of the type considered here to evaluaie such situatioas, it i

4]

fortunate that the stress-rate terms appearing in the variationa

. c
principle, S or @Tijlﬁt » do not appreach zero In the steody case,
hence sinpular cormputitional conditions sieed not be anticipated. This

is not the case in some simpler and inadequate approzclics to this prob-

lem in wlich sufficient care was not devoted to the apprupriate clioice i

of stress—-ratoe deiinition.

On the basis of the theory described, a finite-eloment progran

has been written to evaluate stress and deformation hiztories in an
extrusion problem. The case of a billct being pushad through o die

until a stcady-state configuration was recached has been completed.




The stress fleld exhibits reatuves which are carsistent with the frown

developnmeut of extrusion detects, such as the appeariaunce of suvl oo

. cracks,
)
- 4, Achaouledyencul
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6. Appendix

For sinpliclity, relatious arce developed for Cartesian ares in

the reference state which is instontancously coincident with the

current stote, The pgeneral theory for convected coordinates carries

through in & siuilar sanner but can be tedhnically wach wore involved.




Equacions (15) and (24) yleld the relation,

1 FT R

-~

Materlial differentiation of this relatlon glves

t e
F: >4
.i—
-
vt
f
2]

and for ihe spenlal reference confipuration

-

. 3vi A . .
E'-"-' } y F = ===~ hence Sij = Tij
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uil
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‘, REFERENCS CONFIGURATION.
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Yigure 1. Convected coordinates, & = § '

ot — i
/' ;
\ R
S~ Pt i
- |
: . s a
Figure 2. Cartesian referconce coordinates, X







